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Using three samples of applicant data, encompassing over 2300 partiCipants, the 
Concept Model 5.2 Occupational Personality Questionnaire (OPQ) was examined for 
scale discriminability at the item, scale and factorial level. Item analysis and maximum 
likelihood factor analysis indicated that the OPQ questionnaire provided good, low 
complexity measurement on 22 out of the 31 scales. Nine exhibited poor signal-to-noise 
ratios, high item complexity indices, and insufficient number of keyed loadings on the 
appropriate factor. On the basis of the results below and from those reported by 
Matthews & Stanton (1994), it was argued that the test requires further development in 
conjunction with the revision of the psychological and measurement models specified as 
underlying its construction. 

Introduction 

1 

The Concept 5.2 Questionnaire (Saville, Holdsworth, Nyfield, Cramp & Mabey, 1993) is 
one of a series of questionnaires that are subsumed under the general product title of 
'Occupational Personality Questionnaire' (OPQ). The OPQ was developed from a model 
of personality that was initially generated from a review of existing questionnaires and 
personality theories, some work-related information and feedback from organizations, 
and from some repertory grid data generated by company employees. Using this model as 
a basis for test construction, Saville et al. created several hundred trial items that were 
tested within various companies and organizations in the UK. From the various analyses 
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implemented on these items, 31 scales were retained that provided the operational defi­
nition of the OPQ model of personality. The Concept 5.2 OPQ is the normative 
response questionnaire that is described as the one that most comprehensively measures 
the OPQ model of personality. From these scales, a variety of questionnaires were also 
introduced, some ipsative, some normative, some based upon more 'conceptual' and 
work-oriented validity, others on factor-analytic methodology. Addressing this 
latter point, it is noted that within the manuals for the test series, the OPQ concept and 
factor model questionnaires are described as having been derived using differe.nt 
techniques of test construction. However, there seems to be some confusion within the 
OPQ manuals themselves and within Peter Saville himself over this issue. Although 
Saville & Sik (1995) repeat the assertions that the concept model was deductively derived 
(subjective, rational, or theoretical derivation), and the factor model inductively derived 
(mathematical analysis of covariance between items, as well as theoretical derivation), it 
would appear that the same methods of analysis as used for inductive analysis were used 
to analyse the 'deductive' questionnaire. The only 'deduction' taking place in the 
development of the items and scales was that implemented in order to generate items 
hypothesized to measure a collection of psychological behaviours. Exactly the same as that 
required to generate data for inductive analysis. Barrett & Paltiel (submitted) make this 
point in more detail. 

With regard to the logic of scale construction/item selection as outlined in Section 2 of 
the test manual (Saville et al., 1993), The Development of the OPQ, paragraph 10, page 7 of 
this section states: 

A good item was taken as one which was closely related (i.e. had a high correlation) with other items 
in its own scale, but was not closely related to items in other scales. A good scale was one which was 
internally consistent and which was internally consistent across the four different item formats. 

Factor analyses of items were carried out on three sets of data provided by subjective par­
celling of items into small clusters consisting of three items. Two of the datasets were 
ipsative in nature, requiring preference choices to be made between items. No item fac­
tor analysis was undertaken on the various datasets. The description of the factor analyses 
indicated that factor solutions between two and 19 factors were generated, using Promax 
oblique rotation to simple structure in each case. From these solutions, factorial models 
with four, five, eight, 11, and 19 factors were chosen. No objective criteria were provided 
for selection of these numbers of factors. No higher order factor analyses were reported 
that might have suggested such a hierarchical set of solutions. A 'conceptual' model was 
used as the criterion for the selection of the various factor structures. Finally, after cross­
validating these factors against previous datasets that contained the items used, the final 
factor models were chosen that contained four, five, eight, 10, and 17 factor scales. Four 
non-quantitative criteria were quoted as the 'filters' through which this final set of factor 
models were chosen. 

There are two published studies on the 30 OPQ concept model scales. The first exam­
ined the scale factor structure of the test on a sample of 94 undergraduates (Matthews, 
Stanton, Graham, & Brimelow, 1990). Tests of factor extraction quantity indicated 
five factors to be extracted. The four, eight, 10, and 17 factor models were not replicated, 
neither was the 14 factor factorial model. Although the number of participants was low 
in this study, Barrett & Kline (1981) have previously demonstrated that this quantity, 
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although borderline, is sufficient to permit some degree of confidence in the overall anal­
ysis results and extraction procedures. In a more recent paper, Matthews & Stanton (1994) 
carried out both an item level and scale factor analysis of the Concept 5.2 OPQ, using the 
bulk of the standardization sample of the test (2000 participants). The critical results 
reported in this study were that some of the concept model scales could not be distin­
guished clearly and that only a five or six factor solution appeared with any clarity. A 21 
factor solution was produced but seven of these 'factors' had only six or fewer items load­
ing greater than .3. In all, 175 from the 248 items in the test were retained as part of the 
21 factor solution. In addition, factor similarity analysis (computed by splitting the 2000 
participant sample into two groups of 1000 and factoring them separately) yielded many 
congruence coefficients below .80 (nine our of 21) when comparing factor patterns but 
only five when comparing factor structures. The mean factor pattern congruence was .79, 
and for the factor structure, .86. This implies that considerable covariance exists across 
items and factors, this covariance being partialled out within the factor pattern loadings 
but remaining within the factor structure loadings. 

These results suggest that some of the concept model scales are confounded with 
items that share variance (and likely semantic interpretation) across scales. In addition, 
it appears that 73 of the items do not load on any factors within a 21 factor solution 
as derived by Matthews & Stanton. This is almost one-third of all the items in the 
Concept 5.2 scales. Regardless of whether one considers a scale as a factor or discrete 
measurement quantity, there is something very wrong with a test that claims to measure 
31 separately named and semantically distinguishable concepts but can only be 
objectively shown to distinguish perhaps 21 discrete, mathematically distinct entities. 
Essentially, there appears to be a fundamental discrepancy between what is being 
subjectively modelled and what is actually being demonstrated by the data, using factor 
analysis to mathematically distinguish dimensions or facets of personality. Note further 
that the purported factor structures of the Octagon, Pentagon, and Factor Model OPQ 
tests are not supported by the empirical results reported within the two studies carried 
out by Matthews et al. 

Since no detailed item-level analyses have ever been reported by the test constructors, 
the psychometric measurement properties of the tests are unknown except insofar as the 
internal consistency of most of the scales is high, especially for short six- or eight-item 
scales, and that the test-retest coefficients are also high. These two statistics suggest that 
the scales are measuring behaviour in a consistent and repeatable fashion. What is not 
known is just how much overlap in measurement exists between the normative measure­
ment scales of the OPQ 5.2. 

Given a test measurement model and corresponding psychological model that assumes 
discriminability between the behavioursltraits (as within the familiar domain sampling 
trait model founded upon classical test theory), then significant item-level overlap might 
be considered indicative of poor test development and/or a poor psychological model. 
Why is this? Well, within a domain sampling model, it is required that items measure a 
piece of behaviour that is essentially unidimensional and homogeneous. That is, the 
behaviour to be measured is not a function of more than one causal or latent factor. If it 
is, then interpretation of the item or scale score is now more complex, as any score on the 
item or scale is now a function not of the assumed unidimensional latent trait underlying 
the measure, but of two or more latent traits. It is acceptable for the dimensions/domains 
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to be correlated, but it is not acceptable for items within a domain to be also a direct 
measure of another domain. We have, in fact, strayed from a fundamental tenet of classi­
cal test theory. However, let us assume a questionnaire where items like this are not 
rejected from some test scales-so we now have scales which correlate at about .3 and 
above, which contain some items that correlate with their own scale scores and with 
others. This is really now a matter of theory-if my model proposes correlated dimen­
sions, then I have to accept that some item complexity will probably be apparent. 
However, I also have to wonder whether the dimensional correlation should be so high­
or whether it is my items (or some subset) that are introducing the correlation because 
they are not sufficiently distinct in meaning. Further, I need to consider whether the items 
are actually composing a dimension or are better thought of as a more specific, meaning­
ful cluster that simply measute a single piece of behaviour. It is simply prudent and effi­
cient psychometric analysis to seek to minimize item overlap in order to both clarify and 
differentiate the meaning of each scale composed of such items, and to determine whether 
what were thought to be general scales of behaviour might be better viewed as item 
'parcels', measuring a single, specific behaviour. This in turn forces a re-evaluation of the 
model of personality that should be guiding scale development. 

If I change my measurement model from a domain sampling one to say a circumplex 
one (such as a circumplex model of personality put forward variously by Wiggins (1982), 
Peabody & Goldberg (1989), and Hofstee, De Raad & Goldberg (1992» which makes few 
constraints upon the amount of overlap between traits, then item-level complexity 
becomes a function of the spatial separation distance in the circumplex model. That is, 
the closer the spatial proximity of two traits within the circumplex model space, the more 
overlap might be expected between items measuring the two concepts. However, we have 
now left the domain sampling model far behind. Personal and occupational profiling with 
this form of model is fundamentally different to that currently being used by domain 
sampling trait models (i.e. spatial mapping vs. conventional linear profiling). However, 
the OPQ, according to the personality model underlying the construction of the test, the 
measurement model used, and the recommended practical use and interpretation of test 
results, is a domain sampling test. 

The primary aim of this study is to examine the psychometric properties and discrete 
measurement capability of the OPQ Concept 5.2 Questionnaire, i.e. to what quantifiable 
extent can the concept scales of the OPQ be said to be measuring behavioural traits that 
are uncontaminated to some specified degree with other behavioural trait measures. A 
related aim is an attempt to identify 31 scales of items from an item factor analysis of a 
large sample of OPQ data. 

In order to achieve these aims, it has been necessary to develop some item analysis par­
ameters that are related directly to the level of 'complexity' or relationship between items 
and non-keyed scales. These parameters are defined within the global framework of 'sig­
nal-to-noise' analysis. That is, they all variously index the ratio of keyed scale item indices 
to non-keyed scale item indices. All parameters vary between 0 and 1, with 0 indicating 
no quantitative information available to distinguish a scale of items from any other scale 
or set of items in the test. A value of 1.0 indicates perfect discriminability between the 
scale of items and all other items and scales in the test. A value of. 5 can be viewed as indi­
cating 50 per cent discrimination between a scale and the 'background noise' or non­
keyed items or scales. As with Kaiser's (1974) scaling of his index offactorial simplicity 
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(another signal-to-noise procedure that looks specifically at item complexity across item 
vectors within a factor analysis), we also choose .60 as the lower bound for minimally 
acceptable parameter values. From the rationale above, this might well be considered a 
conservative value. Equivalent parameter values from evoked potential analysis in elec­
troencephalography are generally above .8. 

Specifically, the following measures were generated: 

The computational formula is: 

where 

C66%_ISNR=f IYC} jlK, 
lYe} + {tnSIYC~ I(N -I)} 

ITC = the keyed scale item-total correlation i. It is the item-total correlation 
for an item within the scale in which that item is identified as being a 
member 

nsITC = the correlation between an item and a scale score on which it is not 
assumed to be associated (non-keyed) 

N = the number of scales in the test 
K = the number of non-keyed scale ITCs 2! 66% of the size of the keyed scale 

ITC 

Thus for each item, this parameter indexes the ratio of squared 'keyed scale' correlation to 
the squares of the non-keyed ITCs, modifying this ratio by dividing it by the number of 
'salient' non-keyed ITCs. This correction is required since as the number of scales 
increases in a test, the effect of one or two high correlations across other scales can be 
swamped in the calculation of a mean value. 'Salient' is defined as those correlations 
greater than or equal to two-thirds of the mean ITC for a keyed scale, with a hard lower 
bound of .15 (i.e. if two-thirds of the size of the keyed ITC is less than .15, then it is set 
to .15). In other words, a subjective decision is made here in deciding that a non-keyed 
ITC is critical when its size is greater than this value. Essentially this measure treats as a 
'signal' the keyed scale lTC, and 'noise' as the remaining correlations across the non-keyed 
scales that are at least two-thirds the size of the keyed-scale ITC. 

SQUAL 

The Scale QUALity index. This parameter is an attempt to provide a single par­
ameter that indexes the measurement quality of a scale of items as a whole, taking 
into account scale-item complexity, the signal-to-noise ratio of the scale, and the 
disparity of ITCs below the mean ITC within the scale. In essence it is an attempt 
to capture the many essential psychometric properties of a scale of items as a unitary 
parameter. 
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The formula is: 

C SSNR = SSNR - ( SSNR( ~)) 

LITC i < BoundValue 

CR = 10- 10- ;=1 • NL 

[ [
NL 11 . . (NL· BoundValue) [ S ] 

SQUAL = C_SSNR • CB • CR 

where ITC = the keyed scale item-total correlation i. The item-total correlation for 
an item in the scale in which that item is identified as being a 
member 

nsITC = the correlation between an item and a scale score on which it is not 
assumed to be associated (non-keyed) 

S = the number of items in a target scale 
NS = the number of non-keyed-scale items in the test, i.e. the number of items 

remaining in the test after those in the target scale are excluded 
K = the number of items which correlate ~ the specified value of either the 

mean target scale lTC, or the .5 bound respectively 
NB = the number of items whose C_66%_ISNR value is less then. 5 in a scale 
NL = the number of items in a scale whose ITC is less than the mean ITC for 

that scale 
CB = the correction for high complexity items 
CR = the correction factor for low-ranging ITC disparity 

BoundValue = the mean ITC for a scale or .5 if the mean ITC is greater than .5. 

Thus for each scale, the ratio of mean squared ITCs to mean squared non-keyed ITCs 
is indexed as a Scale Signal-to-Noise Ratio (SSNR). Once again a correction is applied 
based upon identification of salient correlations that are greater than or equal to a speci­
fied bound value. For the OPQ analyses, two specified bound values were used: the mean 
ITC (corrected item-total) correlation for each scale and a constrained maximum value of 
.5 or the mean ITC (if lower) for each. In the case of the OPQ, for each target scale there 
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are eight items, with 240 non-keyed items. Non-scale items which correlated signifi­
cantly with the keyed scale score would have little effect on this uncorrected SNR param­
eter as the division by 240 of the sum of squares would decimate the effect of the few 
salients. Therefore, the scale SNR is corrected by treating the salients as of equal 'signal' 
strength to a keyed item ITC. The logic of this is that if four 'external' items correlate as 
highly with the scale score as do the eight items within the scale, then the C_SSNR param­
eter would indicate a 50 per cent level of 'noise' in discriminating the scale from the remain­
der of the test items. If greater than eight items correlate higher than the bound value with 
the target scale score, the parameter is set to O. The scale measure can no longer be identified as dis­
tinct from a subset of the remaining items in the test. Two other correction factors are then applied 
to the C_SSNR parameter, the first (CB) is a correction based upon the relative size of the 
C_66%_ISNR coefficients in a scale that are less then .5 in size. The correction is then 
weighted by the number of these 'bad items' in order to provide some degree of sensitivity. 
The second correction parameter (CR) is also a weighted factor that indexes the relative dis­
parity in ITCs below the mean ITC in a scale. This coefficient is sensitive to low ITCs within 
a scale that may itself contain many high ITCs. The SQUAL parameter is thus a complex 
function of signal-to-noise, item complexity, and ITC disparity within a scale. 

The term 'quality of measurement' has been chosen to best represent the meaning to 
be attributed to this complex parameter. The parameter is obviously not capable of deter­
mining the utility of measurement made by a scale of items. 

As part of the SQUAL calculations, the items which are not part of that scale are correlated 
with the scale score. The number of items correlating higher than the specified bound value 
are noted. If five or more such items correlate in this way, they are treated as a scale and the 
correlation between the targeted scale score and 'new' scale score is computed, as is the 'new' 
scale alpha coefficient. Of course, the 'new' scale can be composed of any of the remaining 240 
OPQ items that are not keyed on the target scale. This analysis is useful in highlighting alter­
native representations of a target scale generated from other items in the same test. 

Test Quality Index 

The mean of the SQUAL indices for a test. A summary parameter that indexes the 
measurement quality of a test as a whole. 

Test Complexity Index 

This is a summary parameter that attempts to describe the complexity of a test as a 
single numerical index. It is computed by summing the number of C_66 % _ISNR coefficients 
with values of less than .5 (less than 50% 'signal' in an item) and dividing this sum by the 
number of items in the test. This value is expressed as a percentage and provides another sum­
mary parameter indexing the discriminability of test items within a test as a whole. 

Method 

Participants 
Six hundred and twenty-one (gender unidentified) individuals aged between 18 and 50 years provided item­
level data on the OPQ Concept 5.2 Questionnaire (Sample 1). The majority of the participants completed the 
questionnaire as part of a job application process within various companies within the UK. Another 390 male 
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and 30 female applicant forms (age not identified) from within other companies' data were also used (Sample 
2), The questionnaires were administered according ro Saville & Holdsworth's procedural guidelines. A third 
sample of 816 male and 44 female job applicants provided scale level only data (Sample 3). 

Questionnaire 

The OPQ Concept 5.2 Questionnaire normative questionnaire contains 248 items assessing 31 scales, eight 
items per scale, with items answered using a five-point rating scale. Table 1 provides a list of the scale names 
(in addition to the coefficient alphas for the combined Sample 1 and Sample 2 data). 

Factor analyses 

In order to compute two of the measures detailed below, maximum likelihood factor analyses (MLFA) of the 
OPQ item data were undertaken. Principal components analysis (PCA) and image component analysis was 
also undertaken in order to allow compuration of two tests of factor extraction quantity: the Velicer MAP test 
(Velicer, 1976) and Autoscree (Barrett & Kline, 1982). Factor rotations used hyperplane maximized direct 
oblimin rotation with hyperplane bandwidth set at ::1::0.1, and the o parameter swept from -10.5 to +0.5 in 
steps of +0.5. With regard to the use of MLFA, principal component analysis generates components that 
account for the maximum variance possible within the original sample matrix. These components will explain 
as much or more variance than any other factoring method. However, they explain sample variance. That is, 
the loadings so produced by PCA are not necessarily the most likely to represent the population values. PCA 
does not take into account that the sample is drawn from a population, it simply compures its parameters 
based upon the sample data at hand. MLFA on the other hand, is a factor solution based upon the principle 
that the sample matrix of correlations is a sample from a population matrix of such values. The aim is there­
fore to produce maximum likelihood estimates of the factor loadings such that these loadings are those that 
are most likely to occur given the properties of the sample correlation matrix (means, variances, and covari­
ances). Basically, MLFA is an estimation of population values from sample values, much in the same way as 
the sample mean and standard deviations are maximum likelihood estimates of the population mean and SD. 
Whereas PCA will maximize the variance explained by each component (without regard to best reproducing 
the actual correlations within the correlation matrix), MLFA will attempt to directly reproduce the actual cor­
relations within the correlation matrix, from their common and unique factors. In conjunction with the 
MINRES factor analysis technique, MLFA is now generally considered to be the only other acceptable ex­
ploratory common factor analysis model. 

Factorial signal-to-noise parameters 

Index of Factorial Simplicity (IFS). This parameter was introduced by Kaiser (1974). It is a measure of the com­
plexity of an item based upon its factor loadings. The formula is: 

where F = the number of factors 
V = the loading for variable i on factor j 

The parameter varies between 0 and 1, with 0 indicating maximum item complexity and 1 indicating max­
imum simplicity (all but one item loading exactly zero). A value below .5 is considered unacceptable by 
Kaiser, with values above a minimum of .6 considered as acceptable. From the individual item IFS coeffi­
cients, we can compute the mean IFS for a test, or for a scale. 

, 
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Essentially, this parameter indexes the rotational simple structure for a test scale; a good scale is one where 
the loadings of its items are significantly higher on a single factor than across all other factors. The IFS indexes 
the degree to which this aim is achieved in practice. There is of course one problem with the measure, that 
is, it cannot distinguish whether a scale of items is loading on the same specific factor, only if the items are 
loading significantly on one or more factors. Thus, if we had five items (which form a scale) loading on five 
factors, each item loading .5 on a different factor than the rest, and all other loadings of .0, the IFS coefficients 
would all be 1. However, the proposal that the five items measure a single dimension of behaviour would not 
be valid! This underlines the interpretation of the IFS as a measure of item complexity independent of 
item-scale composition. 

Factorial Absolute Signal-to-Noise Ratio (ANR). This coefficient is based upon Fleming's (1985) measure of the 
index of fit for factor scales. The scale signal-noise-ratio (SSNR) coefficient, as detailed above, is a direct ana­
logue and use of Fleming's formula, where item-total correlations were defined as the values to be squared. 
Fleming used factor loadings as the basis for his signal-to-noise ratio. However, in the factor analytic domain, 
it was decided to modify Fleming's formula by using absolute value loadings rather than squared loadings. 
This provides a closer analogue as to how a user interprets columns of factor loadings and is generally more 
sensitive to the size ratio of salient and non-salient loadings. The coefficient is modified for the same reasons, 
and using the same formula as for the SSNR parameter above. It must be reiterated that the use of the uncor­
rected Fleming formula is oflittle value. As the ratio of the number of items in a scale to the number remain­
ing in the test becomes larger, the sensitivity of the coefficient to index any useful information decreases 
correspondingly. The correction 'bound' value for the ANR parameter uses the conventional lower bound of 
.3 for treating a factor loading as significant. Non-scale variables which load equal to or greater than this value 
on a scale factor are summed as significant non-salients. Thus the C_ANR parameter is the direct factorial 
equivalent of the C_SSNR parameter. Finally, an additional correction is made to the C_ANR parameter that 
indexes the number of items within a scale that load less than .3 on the scale factor. This correction has to be 
implemented in order to adjust for the specific case where only some of the keyed items for a scale actually 
load significantly on a factor. Given no other items load significantly on this factor, it is possible to still main­
tain a high signal-to-noise ratio even though maybe only half the number of keyed items load above .3. Thus, 
a correction is applied in the same way as that for the SQUAL parameter, using only the CR parameter 
described above, with loadings replacing the ITC values, and the BoundValue replaced with a constant of .3. 
The signal-to-noise parameter is adjusted for non-keyed salient loadings and for the quantity of keyed items 
loading less than .3 on the scale factor. The absolute noise ratio is thus corrected for non-keyed items loading 
too highly on a factor, as well as corrected for keyed items loading too low. C_ANR values above.7 are invari­
ably generated by item factors where most, if not all, the keyed items load greater than .3 and are the only 
such loadings on a factor. 

Results 

Table 1 provides the corrected mean item-total correlations, mean inter-item correla­
tions, and coefficient alphas computed from the combined data of Samples 1 and 2 
(N = 1041). These are compared to the alphas from the UK normative sample for the 
OPQ scales, based upon 2987 individuals. All mean correlations were computed using 
the Fisher z distribution transform.The alphas for the scales Democratic and Caring have 
been replaced with those published earlier by Saville & Holdsworth, based upon a sample 
of 2306 individuals (SHL update, 1992). The 1993 Concept Model values are in error­
as can be easily verified by computing the standard error of measurement (SEM) values for 
the two scales using both the 1993 and 1992 values. Using the 1992 values, we are best 
able to approximate the 1993 manual SEMs. 

As can be seen from this table, the alphas are in broad agreement with those from the 
normative sample. Although values less than. 70 have been highlighted as indicating sub­
optimal consistency, this is perhaps questionable given the short length of the test scales. 
However, with alphas greater than .8, the counter-argument is that the eight item scales 
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Table 1. Mean item-total correlations (lTC), mean inter-item correlations (R), and alpha coef-
ficients for the joint Sample (1 + 2) item data (N = 1041). The alpha coefficients are compared 
to OPQ normative data provided in the Concept Model Test Manual (N = 2987) 

Joint sample data 
Normative 

Scalea Mean ITC MeanR Alphab alphab 

Rl: Persuasive .50 .32 .79 .74 . 
R2: Controlling .51 .33 .79 .88 
R3: Independent .28 .15 .55 .63 
R4: Outgoing .64 .48 .88 .86 
R5: Affiliative .48 .30 .76 .75 
R6: Socially confident .58 .41 .83 .86 
R7: Modest .65 .48 .88 .75 
R8: Democratic .34 .19 .64 .65c 

R9: Caring .40 .25 .69 .77e 

Tl: Practical .72 .55 .90 .87 
T2: Data rational .70 .54 .90 .88 
T3: Artistic .63 .46 .87 .83 
T4: Behavioural .43 .26 .73 .73 
T5: Traditional .45 .28 .75 .74 
T6: Change oriented .31 .17 .61 .62 
T7: Conceptual .47 .29 .76 .75 
T8: Innovative .59 .42 .85 .84 
T9: Forward planning .31 .16 .60 .57 
TIO: Detail conscious .52 .35 .80 .74 
TIl: Conscientious .47 .30 .76 .80 
Fl: Relaxed .59 .40 .84 .83 
F2: Worrying .43 .26 .73 .73 
F3: Tough minded .56 .38 .83 .83 
F4: Emotional control .58 .40 .84 .76 
F5: Optimistic .47 .30 .76 .73 
F6: Critical .32 .17 .61 .60 
F7: Active .55 .36 .82 .79 
F8: Competitive .52 .33 .79 .71 
F9: Achieving .38 .22 .69 .63 
FlO: Decisive .44 .26 .74 .76 
Fll: Social desirability .40 .23 .70 .67 

aThe copyright OPQ scale names and normative alphas are reproduced with permission from Saville & Holdsworth Ltd. 
bFigures in bold indicate coefficients less than .70 
'These two values are taken from an earlier (SHL Update) published norm of 2306 individuals. The 1993 manual values 
are in error (see text) 

may be too internally consistent to support the proposition that they are measuring a gen­
eral domain of behaviour. The mean inter-item correlations, however, do not support this 
criticism except perhaps with regard to the Practical and Data rational scales where the 
parameter values are .55 and .54, with alphas of .90. Note also that the mean item-total 
correlation (lTC) for these scales are .72 and .70 respectively. Table 2 presents the results 
from the item complexity analysis, that is, examining each scale in terms of the non-scale 
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Table 2. Item Complexity Analysis noting the number of non-keyed scale items that 
correlate greater than or equal to the keyed scale mean item-total correlation (ITC). The 
second set of values is for the case where mean ITC values are constrained to be .5 or less 

Scale 

R1: 
R2: 
R3: 
R4: 
R5: 
R6: 
R7: 
R8: 
R9: 
Tl: 
T2: 
T3: 
T4: 
T5: 
T6: 
T7: 
T8: 
T9: 
TlO: 
Tl1: 
F1: 
F2: 
F3: 
F4: 
F5: 
F6: 
F7: 
F8: 
F9: 
FlO: 
Fll: 

Persuasive 
Controlling 
Independent 
Outgoing 
Affiliative 
Socially confident 
Modest 
Democratic 
Caring 
Practical 
Data rational 
Artistic 
Behavioural 
Traditional 
Change oriented 
Conceptual 
Innovative 
Forward planning 
Detail conscious 
Conscientious 
Relaxed 
Worrying 
Tough minded 
Emotional control 
Optimistic 
Critical 
Active 
Competitive 
Achieving 
Decisive 
Social desirability 

Items 

7 

3 

4 

18 

6 

1 

1 

Mean ITC Bound 

Alpha Corr. 

.69 .53 

.82 .65 

.81 .66 

Items 

7 
5 
1 
5 

4 

18 

3 
6 

1 

1 

1 

.5 Bound 

Alpha 

.69 

.82 

.80 

.82 

.81 

Corr. 

.53 

.73 

.80 

.65 

.66 

Note.<. The column headed 'Items' provides the number of non-keyed scale items that correlate according to the criterion. 
The column headed 'Alpha' (= reliability) provides the alpha reliability for the items scored as a new scale. Five or more 
items were required for the creation of a 'new' scale. 
The column headed 'Corr.' (= correlation) provides the correlation between the items scored as a new scale, and the 
designated scale. 

items which correlate (higher than the specified bound values) with the target scale score. 
The two bound values were the mean ITC for a scale and a value of .5 (or the mean ITC 
if lower. 

These results show that when looking at non-scale items which correlate higher with a 
scale than that scale's mean ITC five scales have significant item intrusion (Independent, 
Socially Confident, Change Oriented, Forward Planning, and Worrying). Where five or 
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more such items correlate with a target scale, these items are themselves formed into a 
scale, scored, and these scale scores correlated with the target scale scores. In addition, an 
alpha is computed for these 'new' scales. The column headed 'Alpha' provides the alpha 
coefficient for this new 'scale', the column entitled 'Corr.' provides the correlation 
between the 'new' scale and the target scale. In 'almost every case, the new scale alpha 
exceeded the target scale alpha, across both bound values. As the maximum bound is 
reduced in size (where relevant) from the mean ITC to .5, the number of these item 'incut­
sions' increases dramatically. This analysis provides a simple but powerful method to view 
the level of 'common' variance amongst items and scales in a test. The results from this 
table indicate that there is considerable measutement overlap across many items in the 
test. That is, although the items may correlate higher with their own score than with 
another scale score, 16.5 per cent of the items in the test correlate higher than the mean 
ITC of a non-keyed scale, and up to 21 per cent correlate higher than .5 (or their mean 
ITC) with non-keyed scales. 

Table 3 provides the SQUAL ratios for the OPQ scales, based upon a .5 item com­
plexity bound. Scales with values below .60 are considered as exhibiting poor discrimin­
ability of item content and poor measutement quality. Values below .5 are indicative of 
serious degradation in the measurement properties of a scale. We reiterate, the rationale 
for these values is based upon the properties of signal-to-noise ratios, where a value of.5 
is representative of 50 per cent 'signal' and 50 per cent 'noise'. Here 'signal' is defined as 
the clarity with which keyed items correlate with their own keyed scale vs. the 'noise' of 
their correlations with other scale scores. 

As a comparison to these item-level indices, the factor-level indices IFS and C_ANR 
were both computed for the maximum likelihood factors. A problem encountered in the 
factor-based measures is that associated with the number of factors extracted and rotated. 
Compression of the factor space tends to decrease both IFS and C_ANR, while excessive 
expansion is likely to also decrease the C_ANR, while the IFS might be expected to be 
reasonably stable. Thus, four rotation solutions were computed based upon Matthews & 

Stanton's (1994) extraction of 21 factors, the Velicer MAP test indicator of 26 (PCA) and 
28 (image) factors, and Autoscree indicators of 17 and 21 factors for PCA and image 
respectively. From these solutions, it was hypothesized that a full 31 factor rotation might 
provide the optimal C_ANR parameters for the OPQ scales. Further, as a by-product of 
the use ofMLFA, it is possible to compute a test for the statistical significance of the num­
ber of factors extracted. For the dataset used (N = 1041, variables = 248), it was found 
that 30 factors were considered 'significant' at p = .05. Thirty-one factors yielded a p value 
of .21. However, since the test is notably sample-size dependent, the sample size was 
reduced to 400 and the analyses recalculated. This yielded a decision of 26 factors to be 
retained. At N = 300, the decision was 23 factors to be retained. Since little could be 
inferred from these values other than more than 20 or so factors seemed a reasonable num­
ber to extract, it was decided to proceed with the rotation of 31 factors. 

Table 3, as well as showing the SQUAL values, also details the IFS and C_ANR coef­
ficients for each scale, as well as the number of absolute valued non-keyed item loadings 
greater than .3 on each scale, and the number of keyed items loading on each scale. The 
reported IFS and C_ANR parameters were computed over the factor pattern rather than 
factor structure matrices as in all cases, the simplicity and SNR ratios were significantly 
greater for pattern loadings. This is due to the fact that in every matrix computed some 
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Table 3. Scale Quality Indexes (SQUAL) based upon corrected scale signal-to-noise ratios 
(C_SSNRs) computed using a .5 bound, Kaiser indices of Factorial Simplicity (IFS), fac-
tor-based corrected absolute noise ratios (C_ANR), the number of non-keyed and keyed 
items loading greater than .3 on each scale factor 

Non-keyed Keyed 
Scale SQUALa IFSa C_ANRa >1.31 >1.31 
----------------------------------------------

Rl: Persuasive .56 .55 .73 0 4b 

R2: Controlling .75 .73 .92 0 7 
R3: Independent .05 .49 .53 0 2b 

R4: Outgoing .24 .60 .11 7 7b 

R5: Affiliative .61 .64 .86 0 7 
R6: Socially confident .15 .69 .11 7 7b 

R7: Modest .88 .84 .96 0 8 
R8: Democratic .81 .62 .89 0 7 
R9: Caring .80 .66 .83 0 5 
Tl: Practical .89 .90 .96 0 8 
T2: Data rational .91 .88 .96 0 8 
T3: Artistic .91 .89 .95 0 8 
T4: Behavioural .86 .57 .87 0 7 
T5: Traditional .82 .75 .93 0 7 
T6: Change oriented .21 .45 .41 0 2b 

T7: Conceptual .76 .67 .89 0 7 
T8: Innovative .87 .81 .94 0 8 
T9: Forward planning .00 .34 .00 8 Ib 

TIO: Detail conscious .83 .67 .90 0 7 
Til: Conscientious .73 .65 .79 1 8 
Fl: Relaxed .46 .46 .75 1 7 
F2: Worrying .12 .55 .49 2 3b 

F3: Tough minded .80 .76 .93 0 8 
F4: Emotional control .88 .80 .93 0 7 
F5: Optimistic .52 .66 .89 0 6 
F6: Critical .56 .53 .53 0 3b 

F7: Active .74 .72 .87 0 6 
F8: Competitive .57 .71 .80 0 6 
F9: Achieving .52 .33 .67 0 3b 

FlO: Decisive .78 .67 .80 1 8 
Fl1: Social desirability .64 .58 .77 1 6 

aFigures in bold indicate coefficient considered less than optimal (below .60). 
hlndicates a poorly defined scale (see text)_ 

factor correlation was present between some of the scales. This invariably has the effect of 
boosting the majority of the loadings in a structure matrix given that the relationship 
between factors is built into the correlation between a factor and a loading. While argu­
ments can be put forward for the superiority of interpretation of strucrure correlations vs. 
pattern beta weights, the specific aims of this particular factor-based analysis methodol­
ogy demands that greater emphasis is placed on the relationship between an item and its 
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factor, irrespective of factor correlations. Thus, the pattern loadings are defining the rela­
tive contribution of a factor to each of its variables, irrespective of the relationship 
between factors. 

The indices in Table 3 show broad agreement between item-level SQUALs and the fac­
tor-based measures of complexity and C_ANR. Values less than .60, for all measures 
including Kaiser's IFS, are considered as indicative of poor scale discriminability and 
measurement quality. Using the data from this table in comparison with those in Tables 
1 and 3, the reason why some of the scales are failing becomes apparent. The Independent 
scale has a low alpha of .55, a fairly low mean ITC of .28, and has seven item-analysis­
level incursions which correlate on average at .53 with the scale score. Only two if its 
keyed items load greater than .3 on the factor. Outgoing and Socially Confident are scales 
with high alphas but are 'noisy' with items from each other scale. Note that the IFS coef­
ficients are insensitive to this kind of overlap, but both the SQUAL and C_ANR par­
ameters detect the cross-loadings on these scales. The Forward Planning scale has a 
moderately low alpha of .60, but with 18 item-analysis-level incursions, six alone from 
the Conscientiousness scale. The alpha for this new scale is .82. The SQUAL for this scale 
is .00, as is the C_ANR. Only one keyed item greater than .3 loads this factor, another 
eight non-keyed items also load it. The Relaxed and Worrying scales show almost the 
same effects as for Outgoing and Socially Confident, but to a lesser degree. 

From this table, we have selected nine scales as being of dubious psychometric valid­
ity. This selection is based upon the consideration of low parameter values «.60) and 
keyed-item loading counts of less or equal to only 50 per cent of keyed items being iden­
tified for a factor-scale (> .3). The scales considered of dubious psychometric validity are: 
Persuasive, Independent, Outgoing, Socially Confident, Change Oriented, Forward 
Planning, Worrying, Critical, and Achieving. 

Table 4 provides a scale intercorrelation frequency count histogram for the OPQ 
data using the combined data of Samples 1,2, and 3 (N = 2301). These data show that 
fewer than l.5 per cent of scale intercorrelations are greater than .5 and above. The 
maximum correlation of .74 was observed between the scales Socially Confident and 
Outgoing. This is what would be expected from the complexity parameter values given 
in Table 3. 

The overall Test Quality Index (TQI), Test Complexity Index (TCI), and IFS for the 
OPQ, based upon the combined Sample (1 + 2) dataset of N = 1041 cases, using the con­
strained .5 BoundValue are .62, 25.81 per cent, and .65 respectively. The OPQ, as would 
be expected from the various parameter analyses above, has summary values indicating 
marginal acceptability in terms of overall measurement quality. The TCI also suggests 
that this is where the test measurement is weakest-too many items are significantly asso­
ciated with the measurement made by other scales on the test ('significantly' defined by 
items correlating greater than .5 or the mean item-total correlation with other scale 
scores). However, since these items are focused on a few scales, it would not be difficult to 
improve these properties of the test by judicious item selection that minimized the prob­
ably needless overlap between scales and non-keyed items. 

Finally, since the essence of the Concept Model for the OPQ is the proposition that the 
scales are drawn from three psychological domains, rating, thinking and feeling, it was 
decided to test this proposition in a quantitative fashion, using strucrural equation mod­
elling. Two simple models were specified according to the naming convention of the scales 



Psychometric properties of the Concept 5.2 OPQ 15 

Table 4. Scale intercorrelation histogram for the OPA data, Samples 1, 2 and 3 
(N = 2301). Absolute value correlations are tabulated 

Range Quantity 
-----------

.0 to .09999 153 

.1 to .19999 163 

.2 to .29999 85 

.3 to .39999 41 

.4 to .49999 16 

.5 to .59999 4 

.6 to .69999 2 

.7 to .79999 1 

.8 to .89999 0 

.9 to 1.00000 0 

R1, R2, R3, ... , R9 from the relating latent variable manifest indicators, T1, ... , T11 
the thinking latent variable manifest indicators, and F1, ... , FlO the feeling latent vari­
able manifest indicators. The data used for the modelling were those based upon the scale 
scores from the combined Samples (1 + 2 + 3) with N = 2301. In Modell, the three latent 
variables were specified as orthogonal to one another, in Model 2, they were allowed to 
correlate. Maximum likelihood estimation was used via the Statistica-SEPATH (Steiger, 
1995) structural equation software. Figure 1 presents the path diagram and fitted coeffi­
cients for Model l. The model chi-square was 10938.109 based upon 402 dJ. (p < .001) 
with a Bentler-Bonnett normed fit index value of .463 and Comparative Fit Index of 
.504. The James-Mulaik-Brett Parsimony fit index was .46. None of these indices is even 
close to their minimal accepted values-generally all above .90. The Steiger-Lind 
RMSEA index was .118. The accepted value for this index is less than .10 (Steiger, 1995). 
For Model 2, as shown in Fig. 2, the model chi-square was 9655.022 based upon 399 dJ. 
(p < .001) with a Bentler-Bonnett normed fit index value of .528 and a Comparative Fit 
Index of .564. The James-Mulaik- Brett Parsimony fit index was .512. The Steiger-Lind 
RMSEA index was .114. 

It is obvious looking at both figures that neither model is a suitable fit to the data. The 
path coefficients (factor loadings) from the latent variables to their respective manifest 
indicators show values well below that required to demonstrate model fit. This brief anal­
ysis is a clear signal that the fundamental three-domain OPQ concept model is unlikely 
to be verified by objective, quantifiable methodology. The use of the R, T, and F initials 
to classify scales is therefore seen as quite misleading and rather subjective. 

Discussion 

Similar to the results reported in the Matthews & Stanton paper, only 22 out of the 31 
OPQ scales emerge clearly from an item and factor-level analysis of the questionnaire. 
These scales are distinguishable from one another with low item and scale complexity. 
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Figure 1. Structural equation model for the the three hypothesized domains underlying the OPQ Concept 
Model 5.2 Questionnaire. The latent variables are orthogonal to one another. 

They can be said to be measuring relatively discrete segments of behaviour, with little 
overlap in measurement between scales. However, the nine scales of Persuasive, 
Independent, Outgoing, Socially Confident, Change Oriented, Forward Planning, 
Worrying, Critical and Achieving demonstrated either high degrees of item overlap, item 
complexity, poor factorial signal-to-noise ratios, or were simply unidentifiable as factors 
defined by keyed item loadings. It is within these nine scales of the test that many of the 
identified measurement problems with the OPQ reside. From the outline of the OPQ 
development in the introduction, and from the subsequent analyses above, it can be 
hypothesized that test development was driven primarily by a desire to maximize the 
alpha coefficient where possible, and to maximize the item-total correlation for each item 
in a scale, whilst maintaining a constant eight items per scale. The OPQ manual indicates 
that item selection for each scale ensured that each item correlated higher with its own 
scale than it did with other scales. This aim alone is insufficient in ensuring that the items 
are not correlating substantively with other scale scores. Items that correlate .6 with their 
own scale and .52 with another scale cannot be said to be making optimal, discriminable 
measurement. Some of the scales noted above as failing to be discriminable from this 
background 'noise' are full of item incursions that have this multi scale correlation prop­
erty. These items inflate scale correlations which can then be used to demonstrate the 
notion of a higher-order 'superfactor' which contains 'primaries' In fact, what we have is 
the case of an item mix which, by definition of the admixture of 'common variance items' 
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Figure 2. Structural equation model for the three hypothesized domains underlying the OPQ Concept Model 
5.2 Questionnaire. The latent variables have been allowed to correlate between one another. 

and actual discrete behavioural items, produces quasi-primaries which can then be corre­
lated and defined to form a higher order factor or concept. The actual breadth of mea­
surement though is more limited than one would expect from the use of the term 'higher 
order'. 

Within the domain sampling model, increasing measurement covariance between 
items produces at best, redundancy of measurement and overlong tests, and at worst, 
incorrect interpretation of test scale scores based upon a scale name that implies discrete 
behavioural measurement but in fact is composed of items that share their variance with 
other test scales. Surprisingly, it appears that some test constructors do not see item over­
lap (indexed by item and factorial complexity) as a significant measurement flaw, rather, 
it is viewed as being of minor importance in comparison to maximizing internal consis­
tency coefficients, with inter-scale correlations left 'floating free' and attracting concern 
only if they exceed some notional, generally unspecified, value. For example, in the paper 
by Matthews & Stanton (1994), they note a recent personal communication from 
Saville ... 'Item analyses were used to ensure that the scales were reliable and not too 
highly correlated with one another, but it is not claimed that the scales are factorially pure'. 
Note that the criterion for 'too highly correlated' is not specified and that factorial impurity 
implies items that are measuring other aspects of behaviour that may not be specifically asso­
ciated with their scale designation or name (Jackson, 1970). Given our arguments in the 
Introduction above, concerning the property of unidimensionality within classical test the-
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ory, it is clear that concentrating solely on internal consistency without also preserving homo­
geneity of measurement is not the optimal way to construct psychometric tests. 

It might be argued that since some of the scales identified here as psychometrically 
'poor' also possess reasonable to high alpha coefficients, then at least the measures 
being made are likely to exhibit reliability and some precision of measurement, even 
though confounded with the measurement made' by other scales. Although the argument 
can be considered sound in principle, the consequences of such an argument in 
practice are not desirable. Without a very clear psychological model and measurement 
model guiding the test development process, highly confused measurement scales 
(such as those identifed in the OPQ) are likely to be the outcome. Although this may not 
affect the eventual use of the scales (as scales confounded by a similar item set will all cor­
relate significantly positively with one another), it is quite unnecessary and is the result of 
suboptimal test development at both the psychological modelling" and psychometric mea­
surement levels. For example, to generate two scales say of worrying and relaxed requires the 
isolation of the common variance shared between the scales, partitioning this off as a new 
scale of X, and examining the specific scale components remaining and subsequently gen­
erating (if felt necessary or desirable) one or more highly focused scales that provide a greater 
fidelity of measurement than the two original 'mixed' scales. In the current combined sam­
ple scale score dataset of 2301 cases, worrying and relaxed correlate at - .632. If we correct 
for the unreliability of measurement, we have a correlation of .81. Not identical, but never­
theless indicating 65 per cent shared varia6ce. More relevant perhaps is the recognition that 
'relaxed' would normally be considered thCf"opposite pole to 'worrying' on a bipolar trait of 
anxiety. The psychological model tha~- proposes that the two concepts are separable would 
need to be extremely specific in order to allow measures to be taken that can discriminate 
usefully between the two concepts. It is to be noted that Jackson (1970) and Wolfe (1993) 
also make this general point rather more forcefully and in more detail in a recent review of 
scale and test construction procedures. 

In conclusion, from the analyses above and taking into account Matthews & Stanton's 
results, it is probable that the OPQ Concept Model 5.2 is overlong, containing a propor­
tion of redundant and quantifiably complex items. Furthermore, there is little evidence 
supporting the existence of 31 discrete measurement scales. Focusing more on the posi­
tive features of these analyses, it has been demonstrated that the OPQ is making high 
quality measurement on up to 22 out of the 31 scales currently existing within the test. 
It is possible that with further development of the test, some of the remaining items/scales 
might be successfully added to these 22 discriminable measures. 
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